A Novel Binary Arithmetic Computational Method

Authors

  • Sumanta Dey Student, Department of Electrical Communication Engineering, Greater Kolkata College of Engineering and Management, Baruipur, West Bengal, India
  • Avishek Saha Student, Department of Electrical Communication Engineering, Greater Kolkata College of Engineering and Management, Baruipur, West Bengal, India
  • Puspen Halder Student, Department of Electrical Communication Engineering, Greater Kolkata College of Engineering and Management, Baruipur, West Bengal, India
  • Amit De Student, Department of Electrical Communication Engineering, Greater Kolkata College of Engineering and Management, Baruipur, West Bengal, India
  • Arindam Sadhu Assistant Professor, Department of Electrical Communication Engineering, Greater Kolkata College of Engineering and Management, Baruipur, West Bengal, India
  • Gour Gopal Jana Assistant Professor, Department of Electrical Communication Engineering, Greater Kolkata College of Engineering and Management, Baruipur, West Bengal, India
  • Pijush Dutta Assistant Professor, Department of Electrical Communication Engineering, Greater Kolkata College of Engineering and Management, Baruipur, West Bengal, India

Keywords:

Arithmetic operation, logical computation, binary number

Abstract

The proposed algorithm for arithmetic operations presents an innovative and intriguing approach, primarily centered around the use of counters and the manipulation of '1's in binary representations. This algorithm promises to introduce significant advancements in computational efficiency and accuracy, making it a potential game-changer in the field of arithmetic calculations. At the core of this method lies the reliance on the number of '1's in each location within a binary number. The user's task is to count these '1's accurately, as the entire algorithm pivots on this crucial factor. If the count of '1's at a specific location is odd, the resulting sum output is '1'; otherwise, it is '0'. Moreover, to ensure continuity in the calculations, half of the '1's will be carried over to the subsequent level, contributing to a streamlined and consistent computational process. One of the standout features of this approach is its adaptability to handle signed binary computations with ease. The use of the 1's and 2's complement methodology further enhances its capability to deal with negative numbers efficiently, demonstrating its robustness and versatility. With its focus on optimizing the utilization of '1's in binary numbers, this algorithm showcases a fresh perspective in arithmetic operations. By leveraging this fundamental element, it opens up new possibilities for enhancing the speed and accuracy of calculations, potentially revolutionizing diverse applications, such as data processing, encryption, and digital signal processing. Furthermore, the reliance on counters as a foundational concept in this algorithm introduces an element of parallel processing, leading to potential opportunities for harnessing the power of parallel computing architectures, thereby optimizing its implementation on modern computational platforms.

Published

2023-08-14