Quantum Leaps: How Quantum Computing Shapes the Evolution of Artificial Intelligence
Keywords:
quantum computing, quantum machine learning, artificial intelligence, quantum neural networksAbstract
Quantum computing leverages quantum mechanical phenomena to enable powerful new forms of computation. With the ability to dramatically exceed the capabilities of classical supercomputers on select complex problems, many researchers anticipate revolutionary impacts of quantum computing on a variety of fields, including artificial intelligence. This research proposal outlines an investigation analyzing the intersection of quantum computation and artificial intelligence. The key research questions explore how quantum algorithms and hardware may practically enhance future artificial intelligence, along with a rigorous methodology to evaluate quantum techniques for machine learning and neural networks tasks against classical benchmarks. The anticipated results include demonstrable advantages of quantum machine learning over classical approaches, providing unique insights into forthcoming advances at the leading edge of artificial intelligence as quantum platforms continue maturing. Ultimately, this research aims to elucidate the emerging symbiotic relationship between quantum physics and artificial intelligence which could shape the landscape of intelligent technologies in the coming decades.
References
Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. Advances in neural information processing systems. arXiv preprint arXiv:1409.3215. 2014. doi: 10.48550/arXiv.1409.3215.
Harrow AW, Montanaro A. Quantum computational supremacy. Nature. 2017; 549 (7671): 203–209. doi: 10.1038/nature23458.
Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum machine learning. Nature. 2017; 549 (7671): 195–202. doi: 10.1038/nature23474.
Schuld M, Sinayskiy I, Petruccione F. The quest for a quantum neural network. Quantum Inform Process. 2014; 13: 2567–2586.
Montanaro A. Quantum algorithms: an overview. NPJ Quantum Inform. 2016; 2 (1): 1–8.
Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA, Burkett B. Quantum supremacy using a programmable superconducting processor. Nature. 2019; 574 (7779): 505–510. doi: 10.1038/s41586-019-1666-5.
Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. 2017; 549 (7671): 242–246. doi: 10.1038/nature23879.
Farhi E, Neven H. Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002. 2018. doi: 10.48550/ARXIV.1802.06002.
Schuld M, Killoran N. Quantum machine learning in feature Hilbert spaces. Phys Rev Lett. 2019; 122 (4): 040504.
Beer K, Bondarenko D, Farrelly T, Osborne TJ, Salzmann R, Scheiermann D, Wolf R. Training deep quantum neural networks. Nat Commun. 2020; 11 (1): 808.
Havlicek V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM. Supervised learning with quantum-enhanced feature spaces. Nature. 2019; 567 (7747): 209–212.
Li C, Wang T, Wu C, Zhao Q, Yang J, Zhang C. Celebrating diversity in shared multi-agent reinforcement learning. Adv Neural Inform Process Syst. 2021; 34: 3991–4002.
LeCun Y, Cortes C, Burges C. MNIST handwritten digit database. [Online]. 2010. Available at http://yann.lecun.com/exdb/mnist/
Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV, et al. Tensorflow quantum: a software framework for quantum machine learning. arXiv preprint arXiv:2003.02989. 2020. doi: 10.48550/ARXIV.2003.02989.